This is default featured post 1 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured post 2 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured post 3 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured post 4 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured post 5 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

Tuesday, May 15, 2012

Application of complex number in engineering

INTRODUCTION

A complex number is a number comprising area land imaginary part. It can be written in the form a+ib, where a and b are real numbers, and i is the standard imaginary unit with the property i2=-1. The complex numbers contain the ordinary real numbers, but extend them by adding in extra numbers and correspondingly expanding the understanding of addition and multiplication.

HISTORY OF COMPLEX NUMBERS:

Complex numbers were first conceived and defined by the Italian mathematician Gerolamo Cardano, who called them "fictitious", during his attempts to find solutions to cubic equations. This ultimately led to the fundamental theorem of algebra, which shows that with complex numbers, a solution exists to every polynomial equation of degree one or higher. Complex numbers thus form an algebraically closed field, where any polynomial equation has a root.
The rules for addition, subtraction and multiplication of complex numbers were developed by the Italian mathematician Rafael Bombelli. A more abstract formalism for the complex numbers was further developed by the Irish mathematician William Rowan Hamilton.

COMPLEX NUMBER INTERPRETATION:

A number in the form of x+iy where x and y are real numbers and i = -1 is called a complex number.
Let z = x+iy
X is called real part of z and is denoted by R (z)
Y is called imaginary part of z and is denoted by I (z)